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Given a reward structure, this paper addresses an optimal replacement problem for complex multi-component systems. To
maintain revenue stream resulting from system, the system is inspected at random times and certain actions are performed in
response to the system state. Decisions are based on a performance measure described by a Squared Bessel process. Since
there are some flow of income and increasing costs due to inspections, the problem is to optimally stop processing the system
and carrying out a renewal to maximize the reward functional. In support of the model a numerical example is provided to
demonstrate the application of the proposed model.
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1 Introduction
Consider a revenue generating gas turbine consisting of n components. It is assumed that the system state is
described by an n-dimensional Wiener process Wt. Decisions are based on a performance measure, the squared
norm of Wt, which describes the total degradation of components. The arguments on the performance measure
are developed with some restriction on the process. This allows a modified form of the performance measure that
is an extended Gamma process is explored. It is shown that the extended Gamma process treated as a Gamma
process with stochastic shape parameter and time-dependent scale parameter is a mixture of stochastic motions
and random jumps which respectively conform to the Gamma process and the non-homogeneous Poisson process.
For condition monitoring and so decision making, the system is inspected according to a homogeneous Poisson
process and certain actions are carried out in response to the observed system state. Each inspection at time t
incurs the cost C(t) = Ct (C > 0). On the other hand, there is a discounted flow of reward from system.
The discounted factor allows future reward to be discounted, a case most common in real application. Using
the local characteristic of EGP as the stopping time of the process, we get an estimate of the net profit over
a cycle that is the difference of the discounted reward resulting from system and the maintenance costs. This
modeling of replacement is similar to those [7, 9] using accumulated damage or total degradation as a basis for
decision making. In many other studies in the literature [4], the replacement of a system is modelled as an N-
policy where an immediate replacement is carried out as number of shocks reaches N. Since the stopping time
controls both the amount of maintenance and the reward, the problem is to determine an optimal operating time
(production run length) which truly balances the flow of reward and increasing cost due to inspections. Due to
some distinctive characteristics of the EGP, specifically, the degradation physics of the EGP described above, the
approach presented is typically appropriate for systems such as gas turbines whose degradation phenomena is
considered as accumulations of additive and irreversible damage caused by environment factors and stress. Some
examples with above characteristics are corrosion, static and alternating stress, thermal stress and physical wear.
We will see that our maintenance modelling technique benefiting from the local characteristic of the EGP provides
more relaxed and generalized approach to the maintenance scheduling problem with some characteristics which
have not been addressed or previously studied in isolation. Basically, using a multivariate system model whose
aggregate measure of performance is the EGP, we develop maintenance models whose attention is either restricted
to perfect repair/inspection, or turned to maintaining single unit systems [5, 6, 10].
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2 Modelling the degradation
Consider the revenue generating gas turbine that deteriorates over time due to normal usage and aging. The turbine
state is characterized by two states: ”in-control” (steady) state, an ”out-of-control” state. The model is based on
realistic assumptions that operation in either one of the states generates income, which is higher in the in-control
state. The assumption implies that a less degraded state of the system results in better performance of the system
and so more income from system. For degradation modeling, we benefit from an aggregate performance measure
that is the squared norm of n-dimensional Wiener process. For this, let the state of n components be described by
an n-dimensional Wiener process with drift parameter µi and variance parameter σ2:

Wi(t) = µit+ σBi(t) i = 1, 2, · · ·n, (1)

where Bi(t) is a standard Brownian motion. The state of the system over time is described by an aggregate
performance measure D(t;x) that is the squared norm of Wt starting from state x. In other words, if

Wt = [W1(t),W2(t), · · · ,Wn(t)] = µt+B(t),

then

D(t;x) = ∥Wt∥2 =
n∑

i=1

W 2
t (t), (2)

where µ and B(t) are the vector of drift parameters and standard Brownian motions respectively. The assumption
of the common variance allows to get the Laplace transform ϕ(x, ϑ) of the squared norm D(t;x) conforming to
an n-dimensional squared Bessel process [8]:

ϕ(x, ϑ) = E
(
e−λD(t;x)

)
=
(
1 + 2λσ2t

)−n
2 × exp

(
−λ

1 + 2λσ2t

n∑
i=1

(µit+ x)
2

)
, (3)

where λ is a real number, ϑ = (υ, µ(t;x)), υ and µ are the parameter and the drift term:

υ =
n

2
− 1, µ(t;x) =

n∑
i=1

(µit+ x)
2
.

The Laplace transform (3) enable us to get the expected value of the squared Bessel process D(t;x) that is

E (D(t;x)) = nσ2t+ µ(t;x).

In the following proposition we show that given some assumptions, the squared Bessel process (2) can be repre-
sented as an extended Gamma process.

Proposition 2.1 Let D(t;x) be the squared Bessel process (2):

D(t;x) ∼ χ2
ϑ

Given that the starting state of the system is x = 0 and the number of components are even (n = 2k) (k ∈ N),
the squared Bessel process Dt ≡ D(t; 0) is an extended Gamma process with the stochastic shape parameter
α(t) = N(t; θ) + n

2 and the scale parameter β(t) = 2σ2t. That is,

Dt
d
= Zt ∼ Gamma (α(t), β(t))

where N(t; θ) conforms to a non-homogeneous Poisson process with the time point process (Sk) (k ≥ 1). In other
words, N(t; θ) admits a smooth semi-martingale representation N = (λ,M) [2]:

N(t; θ) =

∫ t

0

λ(s; θ)ds+Mt

= Λθ(t) +Mt

(4)
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where θ is the vector of parameters, θ =
(
µ, σ2

)
,

λ(t; θ) =
1

2

n∑
i=1

µ2
i

σ2
t,

and Mt denote the intensity and the martingale adapted to the general filtration Ft.
Proof: A proof of the Proposition 2.1 is given by Ahmadi [1]. 2

3 Maintenance decision mechanism
To maintain revenue stream from system, the system is inspected according a homogeneous Poisson process
N(t; γ) with the arrival rate λ(t; γ) = γt(γ > 0) and certain actions are performed in response to the system
state. Decisions at inspection times are based on the local characteristic of the performance measure Zt parti-
tioning the state space Ω into an in-control state G and an out-of-control state Gc. In other words, the process
is stopped and reset back to initial state if the total degradation of the components described by the performance
measure Zt exceeds the degradation threshold Zk ≡ ZSk

at terminal time Sk (k ∈ N), the first entry into the
out-of-control state Gc = [Zk,∞):

Sk = inf {t : N(t; θ) = k} , (5)

and the system operates if Zt ∈ G = [0, Zk) (in-control state). At hitting time Sk, a replacement is instantaneously
performed at cost K and the renewal occurs. As noted from (5), the replacement of the system is determined by
the first hitting time (or, departure time of the process from in-control state to out-of-control state) upon which the
total number of jump arrivals reaches k. So, the replacement rule can be considered as threshold-type policy or
k-replacement policy. In the sense that the system is replaced by new one if the total degradation of components
reaches the critical level Zk, or equivalently, the total number of jumps conforming to the NPP (4) reaches k. Our
aim is to get an optimal operating time determined by the optimal number of arrivals k∗ which balances some flow
of reward resulting from system and increasing inspection costs rate due to inspections. This leads to maximizing
discounted reward of the proposed policy. Sections 4 and 5 show the feasibility of this programme.
The distribution function Fk(t) of the kth arrival time (stoping time) in the NPP with arrival rate λ(t; θ), Sk, is
given by

Fk(t) = P(N(t; θ) ≥ k) =
∞∑
i=k

exp (−Λθ(t))Λθ(t)
i

i!
,

= 1− exp (−Λθ(t))×
k−1∑
i=0

Λθ(t)
i

i!

(6)

with the corresponding density function fk(t):

fk(t) = λ(t; θ)× exp (−Λθ(t))Λθ(t)
k−1

(k − 1)!
, (7)

the hitting time intensity function λk(t; θ):

λk(t; θ) =
fk(t)

F̄k(t)
,

and the mean hitting time of the critical time Gc:

µk =

∫ ∞

0

F̄k(t)dt. (8)

From equation (6) it is easy to see that the cumulative density function of the defined stopping time (5) caused by
performance measure passing a degradation threshold at kth jump is explicit. This distinctive feature underpins the
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Fig. 1: Hitting time intensity λk(t; θ) = fk(t)/F̄k(t) for k = 6, 7, 8 given (µi, σ
2) = (0.1, 1) and n = 4.

extended Gamma process as more suitable degradation model in contrast to the squared Bessel process whose first
passage time distribution due to its implicit form does not analytically accommodate an exact statistical inference.
The Laplace Transform (LT) of the PDF of the first passage time Sk (k ≥ 1) can be given by

F (λ) = L [fk(t)] =
∞∑
u=0

[
α(µ, σ)

]u
u!

×
Γ(u2 + k)

Γ(k)
(9)

where λ(µ, σ) = −2σλ/
√∑n

i=1 µ
2
i . Using the LT of Sk, we get the mean hitting time of the critical set Gc, that

is

µk = E(Sk) =
2σ∑n
i=1 µ

2
i

×
Γ( 12 + k)

Γ(k)
.

In support of above argument, the response of the maintenance model to the number of arrivals k is examined for
different k (see Figures 1). As illustrated changing k affects the hitting time distribution Fk(t) and the hitting time
intensity λk(t; θ) so that decreasing k rises the hitting time probability of the critical set Gc.

4 Reward model
Using α ≥ 0 as a continuous discount factor, the expected total discounted reward over [0, Sk] starting in state
Z0 = 0 is given by

Cα = E

[∫ Sk

0

e−αsZsds−
∫ Sk

0

C(s)dN(s; γ)−K

]
(10)

Since the counting process N(t; γ) has the F-intensity λ(t; γ) and C(t) = Ct is a F-predictable process, using
the argument given in [3], one can show that

Cα = E

[∫ Sk

0

(
e−αsZs − C(s)λ(s; γ)

)
ds−K

]
= C(1)

α − C(2)
α − C(3)

α

(11)

which includes the expected discounted reward C(1)
α earned from system at rate e−αtZt (t > 0), the expected

inspection cost C(2)
α over the cycle [0, Sk] and the replacement cost C(3)

α = K incurred at stopping time Sk:

C(1)
α = C0(α) + C1(α)L [fk(t)] + C2(α)L [fk(t)/t] + C3(α)L

[
fk(t)/t

2
]
+ C4(α)

d

dα
L [fk(t)] , (12)
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that for k > 1

C0(α) =
3k
∑n

i=1 µ
2
i

(k − 1)α4
+

nσ2

α2
, C1(α) =

−(n+ 6k)σ2

α2
, C2(α) =

−12kσ2

α3
,

C3(α) =
1

α
C2(α), C4(α) =

(n+ 2k)σ2

α
.

To get the expected total inspection cost over [0, Sk], let inspections occur according to a HPP with arrival rate
λ(t; γ) = γt and each inspection at time t (t ≥ 0) incurs a cost C(t) = Ct (C > 0). The same argument as above
follows that

C(2)
α = E

[∫ Sk

0

C(s)λ(s; γ)ds

]
= −Cλγ

3
F (3)(α)|α=0,

where F (i)(α) i = 1, 2, 3, · · · denotes the derivative of F (α) = L[fk(t)] of order i ∈ N with respect to α:

F (i)(α) =
di

dαi
L [fk(t)] =

(
−2σ√∑n
i=1 µ

2
i

)i

×
∞∑
u=0

([
α(µ, σ)

]u
u!

×
Γ
(
u+i
2 + k

)
Γ(k)

)
.

Thus, the expected total discounted reward over [0, Sk] becomes

Cα = C(1)
α − C(2)

α −K.

5 Optimizing the model
Our aim is to obtain an optimal replacement policy determined by the optimal number of jumps ”k” which maxi-
mizes the expected total discounted reward of the proposed policy. To this end, let the cycle begin with the system
in the as-good-as-new (stable) condition. Assume that the discount factor is α = 0.2. The choice for costs and the
degradation and maintenance function’s parameters are (C,K) =

(
9× 10−4, 2

)
, (µi, σ

2) = (0.1, 1) and γ = 1
respectively. From Figure 2 it is easy to see that the expected total discounted reward Cα is concave in the number
of external jumps and as indicated Cα achieves its maximum at 12th external jump (k∗α = 12). By plugging the
optimal solution into the equation (8) an optimal solution to the optimal operating time (production run length) of
the system that is µk∗

α
= 171.41 is derived. Therefore, to stop shifting the process from in-control state to out-of

control state and so maintaining the reward stream from the system, it is suggested the process should be stopped
at 12th jump and the replacement is scheduled at optimal time µk∗

α
= 171.41. The proposed policy assures keeping

the process (performance measure) in-control state, the life-cycle profitable and so rising revenue from the system
with the optimum reward C∗

α = 155.522.

6 Conclusion
Given a reward structure, this paper provides an approach to the determination of an optimal replacement policy
for a complex multi-component system (e.g. gas turbine) whose state is described by an extended Gamma pro-
cess. Explored as the modified form of the squared Bessel process, the extended Gamma process and its local
characteristic incorporate into the reward model to get an estimate of the net profit as the difference of the reward
resulting from system and the maintenance costs. The expected total discounted reward is optimized over a cycle
with a terminal time defined as the kth arrival time of a NPP. The optimal number of arrival k∗ determines the
optimal operating time which balances some flow of reward resulting from system and the increasing cost rate
due to inspections. The results of the model provide sensible and realistic replacement policy for such systems.
The paper outlined an approach which can be extended later by implementing degradation and imperfect modeling
techniques for monotone complex systems.
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Fig. 2: Expected total discounted reward as a function of the number of arrivals k given (µi, σ
2) = (0.1, 1), n = 4, γ = 1, the

discounted factor α = 0.2 and the inspection cost per unit time C = 9× 10−4 and replacement cost K = 2.
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