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This paper aims to model the degradation paths of degrading units in presence of an unexplained form of 

heterogeneity among the paths. Focus is on monotonic increasing degradation processes where the degradation 

increments over disjoint time intervals are not independent. The degradation path of each unit is described via the 

Transformed Gamma process, and the “age” and “state” functions that characterize the Transformed Gamma 

process are here assumed to be power-law functions. The unexplained heterogeneity among paths of different 

units is accounted for assuming that the scale parameters of the “age” and “state” functions vary from unit to unit. 

This variability is modeled assuming that the scale parameters are independent gamma random variables. Under 

these assumptions, a quite mathematically tractable model is obtained. The main properties of the proposed model 

are discussed, and inferential procedures based on the maximum likelihood criterion are presented. Finally, the 

proposed model is applied to a real set of degradation data to show the feasibility of the proposed model. 
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1  Introduction 

 

This paper aims to model the degradation paths of degrading units in presence of an unexplained form of 

heterogeneity among the paths. Focus is on monotonic increasing degradation processes }0 );({ ttW  where the 

degradation increments over disjoint time intervals are not independent. The degradation path of each unit is 

described via the Transformed Gamma (TG) process, a Markovian degradation process that was initially proposed 

in [1]. The TG process is a very flexible age- and state-dependent degradation process that possesses the 

distinguishing features of being mathematically tractable; for example, the conditional probability density 

function (pdf) of the degradation growth over a future time interval, given the current degradation level, is in 

closed form. 

In addition, since the TG process can be viewed as a generalization of the gamma (G) process, obtained by a non-

linear transformation of the gamma process, the applicative contexts of the TG process include those of the 

gamma process, specifically degradation phenomena where degradation growth takes place gradually over time in 

a sequence of tiny increments [2]–[3]. Thus, the TG process seems to be suitable to describe degradation 

phenomena caused by continuous use, such as wear, chemical corrosion, consumption, fatigue, and so on. 

Heterogeneity among units is possibly due to internal and/or external factors. In case of observable factors, 

heterogeneity can be modeled by conditioning the stochastic description to a vector of covariates. Recent 

examples of this approach can be found in [1] and [4], where the case of time-independent and time-dependent 

covariates are considered, respectively. In many cases, however, heterogeneity is due to some unobservable 
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factors. In such a case, the previous approach is no more applicable, and the alternative is to assume that some (or 

all) of the stochastic model parameters are random variables. 

Thus, the aim of this paper is to extend the TG process by incorporating random effects. In particular, we assume 

that the “age” and “state” functions that characterize the TG process are both power-law functions, say btat  )(   

and ( )  g w w , respectively, and that the unexplained heterogeneity among the paths of different units is 

accounted for by assuming that the scale parameters a  and   of the “age” and “state” functions, respectively, 

vary randomly from unit to unit. In particular, both the scale parameters are assumed to be independent gamma 

random variables. Under such an assumption, a quite mathematically tractable model is obtained, since the 

(conditional) probability distribution of the degradation increment ) ,(  ttW  over the future time interval 

) ,( tt  involves only univariate integrations. 

The main properties of the proposed model are discussed. In particular, it is shown that when the scale parameter 

of the “age” function is common across the units, so that the heterogeneity involves only the “state” function, the 

pdf of ) ,(  ttW  is in closed form. Inferential procedures based on the maximum likelihood criterion are also 

presented. 

Finally, the proposed model is applied to a real set of degradation data, consisting in the light intensity of a 

heterogeneous sample of LEDs put on test under a constant level of electric current, in order to show the 

feasibility of the proposed model and estimation procedure. 

 

2  The transformed gamma process with random effects 

 

Let )(t  be a non-negative, monotone increasing function of time t, in the following called “age function”, with 

0)0(  , and let )(wg  be a non-negative, monotone increasing and differentiable function of the degradation 

level w , in the following called “state function”, with 0)0( g . An increasing degradation process }0 );({ ttW  

is said to be a TG process with age function )(t  and state function )(wg  if it possesses the following 

properties: 

1. the degradation increments over disjoint time intervals are not possibly independent, 

2. the degradation increment )()() ,( tWtWtW    over the time interval ) ,( tt  depends on the 

process history up to time t , say tH , through the current time t  and the current state (degradation level) 

)(tWwt  , only, being independent on the past, 

3. the (conditional) pdf of ) ,( tW  is given by: 
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where )(' twg  is the first derivative of the state function )(wg  evaluated at tw , 

)()(),( ttt wgwgwg   , )()() ,( ttt   , and )(  is the complete gamma function. 

If )(t  is linear with the age t , then the (conditional) distribution of the increment ) ,( tW  depends on the 

interval width   and not on the current age t , so that the TG process is said to be age-independent. On the other 

side, if )(wg  is linear with w , the distribution of ) ,( tW  is independent of the current level tw , and the TG 

process reduces to a (state-independent) gamma process with shape function )(t  and fixed scale parameter. 

From (1), the pdf and the Cdf of the degradation level )(tW  at the time t  of a new (unused) unit, in absence of 

heterogeneity among the units, are respectively given by: 
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where ] ;[IG sy  is the (lower) incomplete gamma function. 



Several functional forms for the age and state functions can be chosen, as discussed in [1] and [5]. Following [5], 

a power-law function is used for both )( t  and )(wg , say: 

btat  )(       and       wwg  )(  .                                                         (4) 

Under such formulation, the TG process becomes age-independent when 1b , and is state-independent when 

1 . The mean and variance of the degradation level )(tW , in absence of heterogeneity, are in closed form, and 

given by: 
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To describe the random heterogeneity among the units, we extend the assumption made in [6] for the gamma 

process where the heterogeneity has effect only on the scale parameter of the gamma process, and hence we 

assume that the shape parameters b  and   are fixed and that the scale parameters a  and   are random 

variables. Thus, the conditional pdf of the degradation increment ) ,(  ttW  over the time interval ) ,( tt , 

given the unknown (and random) parameters a  and   is: 
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In addition, we assume that a  and   are independent gamma distributed random variables with parameters ( sr , ) 

and ( dc, ), respectively: 
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so that sraE /}{  , 2/}{ sraV  , dcE /}{  , and 2/}{ dcV  . Under the above assumption on the 

distribution of a  and  , the mean and variance of the degradation level )(tW  relative to the heterogeneous  

population of units result in: 
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It should be noted that, differently from the gamma process, the variance of the TG process is not constrained to 

increase monotonically, both in absence [1] and in presence of random effects. 

 

3  Maximum likelihood estimation and prediction  
 

Let us suppose that m  units subject to degradation phenomena are observed, and that random heterogeneity exists 

among the units and/or their operational conditions. Each unit is inspected in  times at possibly not equal ages jit ,  

( mi  ,...,1  and inj  ,...,1 ). Let )( ,, jiji tWw   denote the degradation level of the unit i  measured at the j -th 

inspection time jit , . Then, under the assumptions that the degradation processes are TG with btat  )(   and 
 wwg  )(  , and that the heterogeneity is modeled by assuming that the scale parameters a  and   are random 

variables, the (conditional) likelihood function relative to the unit i , given a  and  , is: 
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where ),...,( ,1, iniii www  is the vector of the observed data of the unit i , 00,0,  ii wt  for all i , and 
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Thus, by using (6), (7), and (8), the (unconditional) likelihood function relative to unit i  is: 
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The evaluation of the likelihood function (12) requires a univariate numerical integration. If only the parameter   

is random, then the likelihood function  )( iiL w is in closed form: 
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whereas if a  is the only random parameter, the likelihood function )( iiL w  still requires a numerical integration: 
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Of course, the likelihood function relative to the whole data set ),...,( 1 mwww   is: 
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Maximum likelihood (ML) estimates of the model parameters can be obtained by using a numerical optimization 

procedure. 

In order to make prediction on the degradation increment during the future time interval ) ,( ,, ii nini tt  of a 

generic unit i , by following [6], we first obtain the distribution of the random parameters a  and   relative to the 

(heterogeneous) subpopulation of units that possess the same history of unit i , that is, the units whose 

degradation levels at the inspection times 1t ,…, int  are equal to 1,1)( iwtW  ,…, ii nin wtW ,)(  . By using the 

theorem of conditional probabilities, we have that  
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Thus, by using (15) together to (6), the pdf of the degradation increment of unit i  in the future time interval 

) ,( ,, ii nini tt , is given by: 
















































 



























0
1

,

,

)(

,

1

1
1,,

1

0

1

1
,

,

)(

1,

1

1

1
1,,

1

1
1,

0 0

,) ,() ,(

d )exp( 

)(

])([

)(

][
 

 d )exp( 

)(

])([

)(

][
  

                                

d d )|,( ),,|()|(

,

,

,

,

,,

asa
ct

dw

wwa

asa
ct

dw

wwa
w

aafawff

i

i

ini

i

i
ji

i

i

ini

i

i
ji

i

iiniini

n

j
ji

ni

ct

ni

n

j jiji
r

n

j
ji

ni

ct

ni

n

j jiji
r

ni

initWitW






















 ww

 

,             (16) 

where  ii nini tt ,1,  ,  ii nini ww ,1,  , and ) ()( ,,1, iii ninini tt    . The degradation increment of the 

unit i  over the future time interval now depends on the whole history of that unit up to init , , but this does not mean 

that the physical degradation phenomenon is no longer Markovian. Indeed, the (not-physical) dependence of the 

degradation increment on the whole history arises from the fact that prediction relative to unit i  is made by 

averaging over the subpopulation of units experiencing the same degradation history of unit i .  

If only the scale parameter   is random, then the (conditional) distribution of   relative to the (heterogeneous) 

subpopulation of units whose vector of observed degradation is given by iw , is gamma: 
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It is worthwhile to note that, in this case, the conditional distribution of   depends only on the last observation 

iniw , , and not on the whole past history. The pdf of the degradation increment in the future time interval 
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where ))(,( ,1, ctB
ii nini     is the Beta function, and of course depends on the past history only through the last 

observation iniw , .  

Finally, if   is fixed and only a  is random, )|( iaf w  depends on the whole history up to init , , and the pdf of the 

degradation increment in the future time interval ) ,( ,, 
ii nini tt  is given by: 
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4  Hypothesis testing 
 

In order to test the hypothesis that one or both the scale parameters of the TG process are fixed, we note that the 

overdispersion (variance-to-mean) ratio of the gamma distributions (7) and (8) tends to 0 as 0s  or 0d , 

respectively, so that by letting, for example, 0s  with }{/ aEsr   fixed, the distribution (7) degenerates to a 

point mass at sr / , and hence the TG process with a  random reverts back to the TG process with a  fixed. Thus, 

the TG processes with a  fixed, or with   fixed, or finally with a  and   fixed, can be considered as 

asymptotically nested into the TG process with a  and   random. 

As a consequence, the likelihood ratio test can be used to test if a  and/or   are fixed, against the alternative 

hypothesis that are random. For example, the likelihood ratio statistic  

)ˆ,ˆ,ˆ,ˆ,ˆ,ˆ|(

)ˆ,ˆ,ˆ,ˆ,ˆ|(
ln 2





dcbsrL

dcbaL

w

w
  , 

relative to the null hypothesis 0H  of a TG process with a  fixed and   random, against the alternative 

hypothesis 1H  of a TG process with a  and   random, is asymptotically distributed as a chi-squared random 

variables with 1  degree of freedom, where )ˆ,ˆ,ˆ,ˆ,ˆ|( dcbaL w  and )ˆ,ˆ,ˆ,ˆ,ˆ,ˆ|( dcbsrL w  denote the estimated 

likelihood functions under the null and the alternative hypothesis, respectively. 

In addition, because the TG process becomes gamma when 1 , then the likelihood ratio test can be easily used 

to assess if the observed process is gamma against the alternative hypothesis that the process is TG. 

 

5  Numerical application 
 

Let us consider the data set given in [7] that refers to the light intensity of 12 light emitting diodes (LED) that 

operate under a constant level of electric current of 40 mA. The degradation level of each unit, that is given by the 

percent loss of light intensity with respect to the initial intensity at time 0t , was measured every 50 hours until 

250 hours (see Table 1). 

The degradation paths are plotted in Figure 1, where the data points are linearly interpolated. The number of 

intersections of the plotted paths is very low, thus suggesting the possible existence of heterogeneity among the 

units. 

Moreover, the empirical estimate of the variance of the degradation level, plotted in Figure 2, initially increases 

quickly, and then decreases monotonically with time. This behavior is not compatible with the gamma process, as 

well as with any other independent increment process whose variance increases monotonically with time, both in 

absence and in presence of heterogeneity. Thus, the TG process, whose variance is not constrained to increase 

monotonically with time, appears to be a suitable model for this data set. 

 

 

Table 1: The LED degradation data  

 

Time 

[h] 

Units 

1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 0 0 0 0 0 0 0 0 0 0 

50 13.4 17.9 17.3 20.2 24.9 16.3 27.0 13.8 18.8 33.2 33.9 23.5 

100 21.3 28.6 29.7 31.7 33.3 26.0 35.0 32.4 35.0 36.7 35.8 38.3 

150 24.0 34.6 36.0 37.7 37.2 32.6 39.3 37.3 39.4 40.7 40.6 38.7 

200 28.4 38.3 38.7 40.0 41.0 37.0 41.7 40.0 40.7 42.7 42.0 40.3 

250 32.0 42.0 40.7 41.0 46.0 38.7 42.0 40.3 42.7 43.5 44.7 44.0 
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Figure 1. The observed degradation data. 
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Figure 2. The empirical estimate of the degradation variance 

 

 

Table 2 gives the maximum likelihood estimates of the TG parameters under several assumptions on the 

randomness of scale parameters a  and  . Where a parameter is random, instead of giving the ML estimate of the 

hyperparameters of the corresponding gamma distribution, Table 2 gives the ML estimate of its mean, say 

sraE ˆ/ˆ}{ˆ   or dcE ˆ/ˆ}{ˆ  , and its coefficient of variation 2/1ˆ/1}{ˆ ra   or 2/1ˆ/1}{ˆ c . This choice makes 

easier the comparison with the cases where the parameter is fixed, and allows an immediate qualitative assessment 

of the randomness of the parameter a  or  . The estimated log-likelihood functions and the values of the Akaike 

information criterion (AIC) are also provided. Note that, given a set of candidate models for the observed data, the 

preferred model is the one with the minimum AIC value [8]. 

From the AIC values in Table 2, we observe that the preferred TG model is Model #2, where only the scale 

parameter a  of the age function )( t  is random. In addition, we observe that the ML estimate of the coefficient 

of variation }{  under Model #4, where a  and   are both assumed to be random, is very small, say 

004.0}{ˆ  , thus confirming that the heterogeneity among the paths can be very well modeled by assuming 

that only a  is random (Model #2).  



Table 2: Estimation results 

 

Model # 
Random 

parameters 

Maximum likelihood estimates 

L̂log  AIC 
â  or }{ˆ aE  }{ˆ a  b̂  ̂ or }{ˆ E  }{ˆ   ̂  

1 None 2.15·10
-2

  1.08 1.10·10
-6

  4.24 -142.62 293.24 

2 a  8.11·10
-4

 0.291 1.69 2.51·10
-10

  6.50 -139.30 288.61 

3   7.45·10
-4

  1.68 3.78·10
-10

 0.252 6.37 -140.75 291.50 

4 a  &   8.15·10
-4

 0.291 1.69 2.56·10
-10

 0.004 6.49 -139.30 290.61 

 

 

Table 3: Likelihood ratio test results, at significance level of 0.10 

 

Null hypothesis Alternative hypothesis     p -value Test response 

TG with a  &   fixed TG with a  &   random 6.632 2 0.036 Reject 0H  

TG with a  random TG with a  &   random 0.000 1 1.000 Not reject 0H  

TG with   random TG with a  &   random 2.892 1 0.089 Reject 0H  

G with a  &   random TG with a  &   random 22.730 1 1.9·10
-6

 Reject 0H  

G with a  random TG with a  random 22.715 1 1.9·10
-6

 Reject 0H  

 

 

 

The same conclusion is reached by performing the likelihood ratio tests. Indeed, as shown in Table 3, at the 

significance level of 0.10, only the null hypothesis that the process is TG with a  random and   fixed (Model #2) 

is not rejected against the TG alternatives. Also the null hypothesis that the process is Gamma (with a  and   

random, or with a  random and   fixed) is rejected against the alternative hypothesis that the process is TG. This 

confirms what suggested by the empirical estimates of the degradation variance in Figure 2, that is, that the light 

intensity degradation process can not be adequately model by the gamma process. 

Finally, in Figure 3 the ML estimates of the mean and variance of the observed process are plotted under Model 

#1 (TG process without random effects), under Model #2 (TG process with a  random and   fixed), and under 

Model #4 (TG process with a  and   random). Also the ML estimates under the gamma process with a  and   

random are depicted. We can see that the gamma process does not fit well the empirical mean and is totally unable 

to fit the empirical variance, whereas the TG process with fixed a  and   (Model #1) is not able to fit well 

neither the empirical mean, nor the empirical variance. In addition the curves relative to the TG process with a  

and   random (Model #4) and the TG process with a  random and   fixed (Model #2) overlap almost perfectly, 

and fit very well both the empirical mean and the empirical variance. 

Finally, by using (19), the predictive pdf of the degradation increments )300,250(W  of selected units, namely 

units #1, 2, 3, 5, and 7, over the future time interval of width 50  hours has been estimated and plotted in 

Figure 4. We note at first that the distribution of the degradation increments changes noticeable among the units, 

mainly due to the different degradation level reached by the units at the common time of the last inspection. 
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Figure 3: Comparison between empirical and ML estimate of the mean (on the left) and the variance (on the right) 

of the light intensity degradation process, under different models. 
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Figure 4: ML estimate of the predictive distribution of the degradation increments of selected units over the future 

interval of 50 h. 

 

 

Moreover, we note that a small difference exists also between units #2 and 7, although their degradation level at 

the last inspection time is the same. This is due to the fact that the past histories of these units are different and, 

although the process is physically assumed to be Markovian, the distribution of the future degradation increment 

depends on the whole history of the unit, due to the dependence of )|( iag w  on the whole history. The (small) 

difference in the predictive distribution implies a slight difference in the estimate of the mean increment, say 

15.10}|)003 ,250({ˆ
2  wWE  and 06.10}|)003 ,250({ˆ

7  wWE . 

 

6  Conclusions 
 
In this paper the presence of random heterogeneity among units subject to a degradation process with dependent 

increments has been considered. The degradation process has been described by the recently proposed 

transformed gamma process, a Markovian process that allows dependence between degradation increments over 

disjoint time intervals to be easily modeled. The random heterogeneity, that can arise from random operating 



conditions and/or technological differences among the units, has been modeled by assuming that the scale 

parameters of the two functions which index the stochastic process model, namely the age function and the state 

function, are independent, gamma distributed random variables. Some distributional characteristics of the 

proposed random-effects model have been discussed, in particular the conditional distribution of the degradation 

increment over a future time interval of a given unit that, in some cases, can depends on the whole past history of 

that unit, although the degradation process is physically Markovian. 

The application of the proposed random-effects model to a real data set has shown the feasibility of the model and 

its ability to assess which model parameter is really affected by heterogeneity. 
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