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This paper describes Bayesian method for degradation test planning with Wiener process. We useconjugate prior 

distributions and criteria based on estimating a unilateral confidence interval of reliability metric. One criterionis based 

on a precision for a credibility interval for failure probability. We provide simple closed form expressions for the 

relationshipbetween the needed numbers of paths and measures(total number of degradation increments) and the 

precision criteria. An example is usedto illustrate the method. 
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1 Introduction 
 

Reliability assessment is becoming an integral part of the design process of complex systems in order to highlight 

potential risk areas so they can be dealt with at the design stage of the project. Indeed, the early control of system 

specifications allows diminishing operating (either financial or safety) risks. Since systems must be more and more 

reliable and offer longer guarantees, it is necessary to check the compliance of their performances as early as possible. 

One can analyze two failure types: 

- Material failures, often appearing all of a sudden, 

- Soft failures, meaning a performance drift in time, until unacceptable levels. 

Testing prototypes allows evaluating the reliability of a system before it is mass-produced. This process requires long 

testing times and huge numbers of prototypes since the latter are more and more reliable, therefore extremely 

diminishing the probability of failure. 

One alternative solution is the study of a performance drift in time, in order to characterize failure probability. This is 

done by testing a number of systems and by measuring the evolution of their performance in time, z(t). The systems are 

considered as failed when their performance has reached the critical value denoted zc. 

The constantly increasing market request for high quality device to verify, before starting mass production, if new 

components or parts attain a field reliability target. To this end, reliability testing is used to estimate the lifetime 

distribution [1]. Common problems in lifetime distribution estimation by testing are the total time required to test and 

the available number of examples for testing to demonstrate reliability to a customer’s satisfaction. This paper proposes 

to define a degradation test plan based on Wiener process and Bayes estimation [1, 3]. 
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2 Reliability testing 
Degradation tests for reliability estimation consist in measuring the evolution of the degradation during the testing of a 

sample of products or systems. We thus obtain a degradation path, z(t), for each tested system and a network of 

degradation paths for the entire sample (see Figure1). 

 

Figure 1- Degradation paths example 

The system is considered as failed when its degradation reaches a critical value, denoted zc. Reaching this critical value 

allows obtaining pseudo-failure times, denoted ti, which are then used to assess reliability function. 

Degradation processes are paths of some stochastic process with independent increments. Wiener process [4, 8] 

characterizes average monotonic degradations. In this paper, we consider the case of a Wiener process with linear 

leaning  and variance ², with following hypothesis: 

- W(0)=0, 

- Increment law W(t+h)-W(t) is normal distribution N(h, ²h), 

- If W0 is a standard Wiener process, i.e.  = 0 et ² = 1, then W(t) = t+W0(t) is a Wiener process of linear 

leaning  and variance ². 

The distribution of pseudo instants of failure, T, is an inverse normal distribution IG(zc/, zc²/²), of density given by: 
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The estimation of and  is obtained by maximum likelihood, using the observed increments; the degradation 

increments are denoted zij (for path i (m paths) and time j (qimeasures on path), as shown Figure2). 

 
Figure 2 - Example of data 

Since degradation increment zij is characterized by a normal distribution (of mean tij and variance tij.(²) with 

²=1/²), the likelihood is: 
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In test, the periodicity of degradation measurements is often constant (tij = t). Considering this assumption, the 

likelihood function can be written  
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withxij = zij/t  

 

The function g({x}|) is characteristic of normal likelihood function.Usually, a probability distribution is defined by 

its parameters which are often unknown constants. Based on a random sample, one can use the maximum likelihood 

method to estimate and obtain confidence intervals for the parameters and the reliability function. 
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3 Bayesian estimation 

 

Recently, a rising interest in the Bayesian approach to reliability and life parameter estimation has emerged [2]. To 

statisticians and reliability engineers this approach is appealing since it provides a method of using their past 

experiences and/or prior convictions in describing the studied parameter x stochastically.  

On some situations the parameter is not known, but can be treated as a random variable with a known prior probability 

density. Under this scenario, one can combine information from the random sample and prior probability distributions 

to obtain (l-) Bayesian confidence intervals for the parameters. The objective of this section is to obtain the Bayesian 

estimators for the parameters  and  of the normal distribution [5, 6]. 

 

3.1  Bayesian principle 

The probability density function f( |{x}) of the posterior pdf of  and   obtained from the sample of observations 

{x} and the pdff()  and f’()  of the prior distribution of  and   is given by  
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where and : parameters to estimate 

 {x} = { x11x1q1
xijxmqm

}: observed data 

 f() and f’() : prior probability density functions (available knowledge from the experts) 

 g({x}|) : likelihood function 

 f( |{x}) : posterior density function  

 D() and D() : set of nature states 

Now, two cases are studied to define the posterior pdf: 

 No knowledge on  and  

 Available knowledge on  and  

Case 1: No knowledge on  and  

When there is no information about the mean and the inverse variance the uniform uninformative density is used to 

define the prior pdff() and f’(). The selection of this uniform probability density is based on the fact that this pdf has 

maximum entropy among all pdf that are non zero in a given range. 
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Figure3 - Uniform uninformative pdf 

The likelihood function is given for a sample of size n by 
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Thus, the posterior pdf is written as 
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Following [3, 5, 6], the posterior pdf is given by  
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which is a combination of the gamma and normal distributions. 

Case 2: Available knowledge about  and  

Following [3, 5, 6], we propose to choose the prior pdf defined by the relationship (8.). Then the posterior pdf is 

written(9.) 
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which is a combination of the gamma and normal distributions. 

Note that the form of relationship (9.) is identical to (8.). The prior pdf defined by (9.) is the natural conjugate. 

 

3.2 Bayesian point and interval estimation 

Once the posterior distribution is defined, the estimators of the parameters  and  can be obtained by using the 

marginal distributions associated to  and . 

The marginal distribution of is written as 
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The point estimate for  is defined by the mode of f(|x) and the point estimate of variance are given by 
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The two-sided confidence interval (defined by min and max) is evaluated such that: 
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with (1-) the given confidence level. 

 

The marginal distribution of is written 
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with
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The point estimate for  is defined by the mode of f(|{x}) 
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The two-sided confidence interval (defined by min and max) is evaluated such that  
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with (1-) the given confidence level. 

 

In the case when no knowledge is available, the point estimates of mean and variance are defined by known 

relationships 
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witha, b and c defined by eq (9.) 

 

In the case in which prior knowledge is available, the point estimates of mean and variance are defined by : 
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where a, b and c are the parameters of the prior pdf and a’, b’ and c’ the parameters of the posterior pdf. 

 

3.3 Determination of the prior distribution from available information 

The standard deviation (s) interval and prior mean degradation increment  are provided by an expert [7] or the results 

of a previous analysis. The prior knowledge is given by a believed estimation of mean and a range believed to contain 

the inverse of the variance  
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The prior pdff(,x) is defined by the relationship (10.) with the unknown parameters a, b and c. 

 

Evaluation of a and b by Moments method 

The marginal distribution of  is written 

  
1

| ( , )
( )




 

 


a a bb e
f x a b

a
G  (19.) 

The interval [min, max] defines an uniform distribution. The mean and variance for this distribution are  
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The mean and variance for a gamma distribution G(a,b) are given by 
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By evaluating of means and variances (E() =E’() and V() =V’()), the values of parameters a and b are deducted to 

be 
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Evaluation of c 

The marginal distribution of  is written 
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with 
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This marginal distribution is symmetric around the c value (a and b are also defined). Then the c value is given by 

c =  (24.) 

In the following section, we propose to solve the degradation test planning problem for Wiener process. 

4  Test planning 

Degradation tests are often planned to estimate a particular metric (i.e.,failure probability Pf) of the reliability 

distribution (see figure 4). It is natural to use a criterion for the planning problem that is constructed from somemeasure 

of the precision of estimation of Pf. 

 
Figure 4 – Definition of planning problem 

 

In the Bayesian framework, estimation precision can be specified as a functionof the posterior estimation of reliability 

metric. For a given test planD(m, qi with i=1,…m, testing duration T), the posterior estimation of reliability metric 

depends on the data. A reasonable Bayesian criterion for test planning is then the preposterior expectationof the 

posterior estimation precision function. This criterion is computed by taking an expectation over the marginal 

distribution of the data to account for allpossible outcomes from theexperiment. 

The failure probability is given by : 

 1fP u    (25.) 

where: 𝑢 =
𝑧𝑐− 𝜇 ∗𝑡+𝑧0 

𝑠∗ 𝑡
 with target time t , initial degradation z0and critical degradation thresholdzc 

 

The upper interval on failure probability (for confidence interval 1-)is : 

𝑃𝑓𝑢𝑝𝑝𝑒𝑟  =  1 − 𝛷(𝑢𝑙𝑜𝑤𝑒𝑟 )  (26.) 

with:  

𝑢𝑙𝑜𝑤𝑒𝑟 = 𝑢 − k1−α ∗  𝑣𝑎𝑟(𝑢) 

and 
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1

𝑠2
∗ [ 𝑡 ∗ 𝑉𝑎𝑟 𝜇 + 𝑢2 ∗ 𝑣𝑎𝑟 𝑠 ] 

withk1−αvalue of the quantile of normal standard distribution for the probability 1-α.  

 

The variance on u is deducted from (10.) and (13.) : 
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To define the test plan, we determine the lower bound uloweron u from failure probability target Pf: 



𝑢𝑙𝑜𝑤𝑒𝑟  =  𝛷−1(1 − 𝑃𝑓)  (28.) 

The target variance ( )Var u on u is deducted from : 
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Where 𝑢 =
𝑧𝑐− 𝜇 ∗𝑡+𝑧0 

𝑠∗ 𝑡
 is defined with the mean  and standard deviation sgiven, respectively, by the relationships 

(17.) and (18.).  

 

We consider that the testing results will follow the prior degradationincrement distribution : 
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Finally, the posterior parameters become : 
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The testing plan is chosen in searching the value n in relationship (27.) allowing to guarantee the value ( )Var u (see eq. 

29.). 

5  Example 

Let us consider Negative Temperature Coefficient (NTC) probes (see Figure 5).  

 
Figure 5 -Negative Temperature Coefficient (NTC) probes and test conditions 

 

A classic test is to put it in a climatic chamber and wait for humidity infiltration that will lead to a drift on resistance and 

so finally on temperature value (see Figure 5).  

 

From literature and experience, NTC references that have troubles are chosen with: 

- Mean μ = 0.37 K/day  

- Standard deviation σ = 0.2 K/day
1/2

 

- Critical value zc is chosen at 2 K. 

The target failure probability Pf is fixed at 10% for duration t=4 days and risk  = 20%. 

 

The prior parameters are determined in considering a variability of 30% on inverse of variance.  

 min max 

0.37 K/day 0 50 

a 

(from eq. (22.)) 
b 

(from eq. (22.)) 
c 

(from eq. (24.)) 

3 0.24 0.37 
Table 1–Prior information and parameters 

The lower bound ulower on u is determined from failure probability target Pfby eq. (28.) : 

𝑢𝑙𝑜𝑤𝑒𝑟  =  𝛷−1 1 − 0.1 = 1.28 

The target variance ( )Var u on u is deducted from eq. (29.) : 

1

1.3 1.28
( ) 0.148

0.84

 
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Var u
k

 

The testing plan is chosen in searching the value n in relationship (27.) allowing to guarantee the previous value ( )Var u

. The result is given in table 2. 

a' b' c' n Var(u) (from eq. (27.) 

27.5 0.24 0.37 49 0.147 (< ( )Var u =1.48) 
Table 2–posterior parameters and sample size of degradation increments 

In considering industrial constraints, the items sample size and measures number can be chosen (ie. 5 items and 10 

measures per item). 



6  Conclusion 

In this paper, Bayesian method for degradation test planning with Wiener process is presented. We useconjugate prior 

distributions and criteria based a credibility interval for failure probability. We provide simple closed form expressions 

for the relationshipbetween the needed numbers of paths and measures(total number of degradation increments) and the 

precision criteria. An example is usedto illustrate the method. 
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