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This paper proposes a sensitivity analysis of the block replacement policy when the unknown parameters of the time-to-failure
are unknown but can be estimated. Based on the asymptotic normality of the parameters estimator and the δ-method, the
asymptotic distribution of various quantities is derived and therefore the sensitivity of the block replacement policy to the
parameter estimations is analyzed. An application to the case of exponentially distributed lifetime is proposed.
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1 Introduction
For a given parametric distribution of time-to-failure (or lifetime) of a device, one can determine the optimal inter-
inspection delay for the block replacement policy. However, this optimal block replacement policy depends on the
parameters of the time-to-failure distribution, which are in general unknown. These parameters can be estimated,
for instance, from a sample of time-to-failure observations and it provides only an estimation of the optimal inter-
inspection delay (still for the block replacement policy). A question arises naturally: what is the variability induced
by the estimation procedure? The sensitivity analysis of the block replacement policy is the purpose of this paper.

In Section 2, we start to recall some well-known results for the block replacement policy. Then, we provide some
general results about the sensitivity analysis of this replacement policy. These results are based on the assumption
of asymptotic normality of the estimators. It allows to apply the classical δ-method and some of its extensions. In
Section 3, we provide an application to the case of the exponential distribution for the time-to-failure. In the last
section, we conclude with some forthcoming works.

2 Sensitivity analysis of the block replacement policy
In this section, we first recall some definitions and well-known results corresponding to the block replacement
policy. Then, we consider its sensitivity analysis. It will be based on the application of a generalization of the
δ-method. Eventually, we provide some general results.

3 Recall on block replacement policy
Well-known results on block replacement policy are provided here. For more details, one can refer to chapter 5 in
[3].

Let T be the time-to-failure (or lifetime) of the device. Suppose that the distribution of T depends on some
parameter θ ∈ Θ ⊂ Rp. One considers the usual notation: fT (·; θ) for its probability distribution function,
FT (·; θ) for its cumulative distribution function, and ST (·; θ) for its survival function (or reliability).
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One assumes that the degradation level of the device can be measured only during inspections (i.e. no continuous
monitoring) and that, at each replacement, the device is replaced by a new one or is perfectly repaired (AGAN), the
replacement/repair duration being negligible. Moreover, replacement occurs only after an inspection (in particular
there is no replacement at times-to-failure). Such scheme is the so-called block replacement policy. There exists
two different costs : the cost cr for replacing the device by a new one and the unavailability cost cu.

This policy depends on a single parameter δ, the delay between two consecutive inspections and induces a certain
cost. Thus, one can be interested in determining the optimal inter-inspection delay δ?. In order to determine it, we
consider the asymptotic cost per unit of time defined as follows:

C(δ; θ) = lim
t→∞

Ct(δ)

t
,

where Ct(δ) is the cost over the time interval [0, t] when the device is inspected at (kδ)k∈N. As it is well known
[2], according to the renewal theory, one has:

C(δ; θ) =
Expected cost over a cycle

Expected cycle length
.

For the block-replacement policy, we have:

C(δ; θ) =
E[cr + cu(δ − T )+]

δ
=
cr + cu

∫ δ
0
FT (u; θ)du

δ
.

Therefore,

lim
δ→0

C(δ; θ) = +∞ and lim
δ→+∞

C(δ; θ) = cu.

Let us denote δ? := argminδ>0C(δ; θ). Differentiating the above expression of the cost function, δ? is the root of
the following function (with respect to δ):

φ(δ; θ) = E[T1T6δ]−
cr
cu

(1)

where

E[T1T6δ] =

∫ δ

0

ufT (u; θ)du = −δST (δ; θ) +

∫ δ

0

ST (u; θ)du (2)

(recalling that crcu 6 1). The solution depends on the two costs cr and cu only through their ratio (and so does not
depend on the monetary unit). Since, for fixed θ ∈ Θ, δ 7→ φ(δ; θ) is an increasing function towards E[T ]− cr/cu
(which depends on θ) with φ(0; θ) = −cr/cu, it follows that δ? is finite if E[T ] > cr/cu and is infinite otherwise.
Under this condition of existence for δ?, it is well-known that the optimal cost is equal to:

C? = C(δ?; θ) = cuFT (δ?; θ).

It follows that the optimal delay is given by:

δ? = F−1T (C?/cu; θ),

where F−1T (·; θ) is the quantile function of the random variable T . Replacing this expression of the optimal delay
in the function φ and after some simple algebra, one can obtain an implicit function ψ satisfied by C?:

ψ(C?; θ) =

∫ C?/cu

0

F−1T (u; θ)du− cr
cu

= 0.
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3.1 General results for the sensitive analysis
Let us denote by θ0 ∈ Θ the true parameter of the time-to-failure distribution. As seen above, optimal inter-
inspection delay δ?0 , can be computed by determining the root of φ(·; θ0). Most of the time, the parameter θ0 is
unknown but could be estimated from a sample of time-to-failure observations. Let us denote by θ̂n an estimator
of θ, say for instance the maximum likelihood estimator. Assume that this estimator has ’good’ properties, like
consistency:

θ̂n
Pr−−−−→

n→∞
θ0, (3)

and like asymptotic normality:
√
n
(
θ̂n − θ0

)
d−−−−→

n→∞
N (0,Σ2

0), (4)

where the asymptotic variance-covariance matrix Σ2
0 depends on θ0. If θ0 is unknown, one can replace θ0 by θ̂n in

order to estimate δ?0 . In such case, we have only an estimator δ̂?n of the optimal inter-inspection delay. A natural
problem is then the following: which properties are satisfied by δ̂?n? The optimal cost is unknown but could be
estimated by Ĉ?n: which properties of Ĉ?n also hold? How far is this estimation from C?0?

A convenient tool to answer these questions will be the δ-method. It can be stated as follows:

Theorem 3.1 Let (Xn)n∈N∗ be a sequence of Rp-valued random vectors. Assume there exists µX ∈ Rp and Σ a
definite positive matrix such that

√
n (Xn − µX)

d−−−−→
n→∞

N(0,Σ).

Let q real functions f1, . . . , fq with continuous first partial derivatives at µX , where at least one of these derivatives
is non-zero. For i ∈ {1, . . . , q} and for any n ∈ N∗, set Yi,n = fi(Xn), Yn = (Y1,n, . . . , Yq,n)T and µX =
(f1(µX), . . . , fq(µX))T . Then, the sequence (Yn)n∈N∗ is also asymptotically normal:

√
n (Yn − µY )

d−−−−→
n→∞

N(0,KΣKT ),

where K is the q × p matrix with elements ki,j = ∂fi/∂xj for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.

This result will be used here to obtain a point-wise asymptotic normality of the cost function (i.e. for any fixed
value of δ). Unfortunately, we cannot apply it to derive the asymptotic normality for the optimal delay or for
the optimal cost. Indeed, δ?0 and C?0 are the solutions of implicit equations and the classical δ-method cannot be
anymore used. Thus, we need an analogous tool for this situation. It has been considered by Benichou and Gail
[1].

Theorem 3.2 Let (Xn)n∈N∗ be as in the previous theorem. Let µX ∈ Rp and µY ∈ Rq . Let g1, . . . , gq a set of
q continuous functions from Rp × Rq into R with continuous first partial derivatives in an open set containing
(µX , µY ). Let Yn be the Rq-valued random vectors satisfying gr(Xn, Yn) = 0 for all r ∈ {1, . . . , q}. Let Jx,y be
the q× q matrix with elements ∂gi

∂yj
(x, y) and let Hx,y be the q×p matrix with elements ∂gi

∂xj
(x, y). If |JµX ,µY

| 6= 0

and if each rows of J−1µX ,µY
HµX ,µY

contain at least one nonzero element, then

√
n (Yn − µY )

d−−−−→
n→∞

N(0, J−1µX ,µY
HµX ,µY

ΣHT
µX ,µY

(J−1µX ,µY
)T ).

We first consider the estimated cost function obtained by the plug-in method:

∀δ > 0, C(δ; θ̂n) =
cr + cu

∫ δ
0
FT (u; θ̂n)du

δ
.

By a simple application of the continuous mapping theorem and provided that Equation (3) is satisfied, it is a
convergent point-wise estimator of C(δ; θ0):

∀δ > 0, C(δ; θ̂n)
Pr−−−−→

n→∞
C(δ; θ0).
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Next proposition states that the asymptotic normality also holds. It is a straightforward application of the classical
δ-method, see Theorem 3.1.

Theorem 3.3 Assume that Equation (4) is satisfied and that θ 7→ C(δ; θ) is differentiable for any δ > 0. Let
∇θC(δ; θ) be the gradient vector of the cost function (with respect to θ). If ∇θC(δ; θ) is continuous and if
∇θC(δ; θ0) 6= 0Rp , then C(δ; θ̂n) is an asymptotic normal (point-wise) estimator of C(δ; θ0):

∀δ > 0,
√
n
(
C(δ; θ̂n)− C(δ; θ0)

)
d−−−−→

n→∞
N (0, σ2

cost),

with σ2
cost = ∇θC(δ; θ0)Σ0∇θC(δ; θ0)T .

As an application of Theorem 3.2, we can also prove that δ̂?n is also an asymptotically estimator of δ?0 under
some regularity assumptions of the function φ.

Theorem 3.4 Assume that Equation (4) is satisfied and that θ 7→ φ(δ; θ) is differentiable for any δ > 0. Let
∇θφ(δ; θ) be the gradient vector of φ (with respect to θ). If∇θφ(δ; θ) is continuous with∇θφ(δ; θ0) 6= 0Rp and if
fT (δ?0 ; θ0) 6= 0, then δ̂?n is an asymptotic normal estimator of δ?0:

√
n
(
δ̂?n − δ?0

)
d−−−−→

n→∞
N (0, σ2

opt.delay),

where σ2
opt.delay is given by:

σ2
opt.delay =

∇θφ(δ?0 ; θ0)Σ0∇θφ(δ?0 ; θ0)T

[δ?0fT (δ?0 ; θ0)]
2 .

Similarly, Theorem 3.2 can be also used to prove the asymptotic normality of the optimal delay Ĉ?n.

Theorem 3.5 Assume that Equation (4) is satisfied and that θ 7→ ψ(C?; θ) is differentiable for any C? > 0. Let
∇θψ(C?; θ) be the gradient vector of ψ (with respect to θ). If∇θψ(C?; θ) is continuous with∇θψ(C?0 ; θ0) 6= 0Rp ,
then Ĉ?n is an asymptotic normal estimator of C?0 :

√
n
(
Ĉ?n − C?0

)
d−−−−→

n→∞
N (0, σ2

opt.cost),

where σ2
opt.cost is given by:

σ2
opt.cost =

c2u∇θψ(C?0 ; θ0)Σ0∇θψ(C?0 ; θ0)T[
F−1T (C?0/cu; θ0)

]2 .

It is easy to see that the gradient function (with respect to θ) involved in the above asymptotic variance can also be
expressed as follows:

∇θψ(C?0 ; θ0) =

∫ C?
0 /cu

0

∇θF−1T (u; θ0)du.

4 Application to the case of exponentially distributed time-to-failure
We now assume that the time-to-failure T is exponentially distributed with unknown parameter λ0 ∈ R+ = Θ:

∀t ≥ 0, ST (t) = e−λ0t.

Assume that we observe a n-sample T1, . . . , Tn of time-to-failure distributed as T . The maximum likelihood
estimator is given by the following natural estimator:

λ̂n =
n∑n
i=1 Ti

.
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It is well-known that this estimator is convergent and asymptotically normal:

√
n
(
λ̂n − λ0

)
d−−−−→

n→∞
N (0, λ20).

For such distribution, the cost function turns to be:

C(δ;λ0) =
1

δ

{
cr + cu

∫ δ

0

(1− exp (−λ0u)) du

}

=
1

δ

{
cr + cuδ −

cu
λ0

(
1− e−λ0δ

)}
.

For any fixed value of δ, the partial derivative of C with respect to λ0 is equal to :

∂λC(δ;λ0) =
cu
δ

(
1

λ20
−
(
δ

λ0
+

1

λ20

)
e−λ0δ

)
.

It follows that, for any δ > 0, the asymptotic variance in Theorem 3.3 is equal to:

σ2
cost = c2u

[
1

λ0δ
−
(

1 +
1

λ0δ

)
e−λ0δ

]2
.

Now let us consider the function φ introduced in the previous section. For such distribution, it turns to be:

φ(δ;λ0) =
1

λ0
−
(
δ +

1

λ0

)
e−λ0δ − cr

cu
.

The first order partial derivatives of φ are given by:

∂δφ(δ;λ0) = λ0δe
−λ0δ

and

∂λφ(δ;λ0) = − 1

λ20
+

(
1 + λ0δ −

1

λ20

)
e−λ0δ.

It follows that the asymptotic variance in Theorem 3.4 is equal to:

σ2
opt.delay =

[
δ?0e
−λ0δ

?
0

(1 + λ20 + δ?0λ
3
0)e−λ0δ?0 − 1

]2
.

At least, using the expression of the quantile function for the exponential distribution, we obtain that the optimal
cost C?0 satisfies the following equation:

ψ(C?0 ;λ0) =

(
1− C?0

cu

)
log

(
1− C?0

cu

)
+
C?0
cu
− λ0

cr
cu

= 0.

Then, the first order partial derivatives of ψ are given by:

∂δψ(C?;λ0) = − 1

cu
log

(
1− C?0

cu

)
and

∂λψ(C?;λ0) = − cr
cu
.

It follows that the asymptotic variance in Theorem 3.5 is equal to:

σ2
opt.cost =

[
λ0 log

(
1− C?0

cu

)]2
.
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5 Conclusion
In this paper, we have proposed a general framework for the sensitivity analysis of the block replacement policy
where uncertainty comes from unknown parameters for the time-to-failure distribution that should be estimated.
The case of exponentially distributed time-to-failure has been studied to illustrate the approach we have developed.
Different parametric distributions can be also considered and the sensitivity analysis of some other replacement
policies can be made in the same way. At least, this approach could also be used to study the sensibility of more
complex policies, like, e.g., condition-based maintenance policy.
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